陕西师范大学计算机科学学院作了一场题为“深度度量学习在视觉分析中的应用”的讲座,计算机科学学院现有计算机软件与理论和计算机应用技术两个硕士点,开设有计算机科学技术(师范、非师范)和信息管理与信息系统二个本科专业,学院还承担着全校计算机公共课的教学任务。讲座的主要内容是:
视觉模式的相似性度量是视觉计算中的一个基础问题,设计一个有效的相似性度量准则对于提高视觉分析系统的性能十分关键。度量学习旨在利用训练数据学习出有效的距离度量,进而有效地描述样本之间的相似度。传统的度量学习算法大多数都是学习出一个线性的马氏距离,因而不能有效地描述样本的非线性结构。报告将介绍本研究组近年所提出一种新的深度度量学习方法及其在视觉分析中的应用。通过构造一个深度神经网络,在网络的顶层设计任务相关的目标函数优化网络的参数,从而更好地学习出鉴别度量空间。所提出的方法在包含人脸识别、行人识别、物体识别、图像集分类、目标跟踪、图像检索和跨模态匹配等多个视觉分析的应用中验证了其有效性。