上海财经大学李同教授“全球适定性和旅游趋PDE模型的行波解”。调查的本地和全球的存在性,爆破准则与经典解的长时间行为从凯勒 - 谢格尔模型描述趋衍生偏微分方程的系统。此外,我们建立的存在和大振幅的行波解从凯勒 - 谢格尔模型推导出非线性守恒定律的系统的非线性稳定性。以下是原文:
Global Wellposedness and Traveling Wave Solutions of PDE Models of Chemotaxis
We investigate local and global existence, blow up criterion and long time behavior of classical solutions for a system of PDEs derived from the Keller-Segel model describing chemotaxis. Moreover, we establish the existence and the nonlinear stability of large-amplitude traveling wave solutions to the system of nonlinear conservation laws derived from Keller-Segel model.